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Abstract. A constrained SOS model is used to describe the shape of the rounded region 
between two semi-infinite facets of a simple cubic crystal. Low- and high-temperature 
results are derived as well as the detailed behaviour near the crystal facet. Applicability 
of the model is limited to low temperatures where roughening effects are unimportant. 

1. Introduction 

At temperatures below the faceting or roughening transition the equilibrium crystal 
surface consists of a set of planar facets and smooth rounded regions interpolating 
between different facets (Rottman and Wortis 1984a). This paper will discuss the shape 
of the rounded region for the simplest possible situation: the meeting of two semi-infinite 
facets. In this case the geometrical intersection of the facet planes establishes an axis 
of translational symmetry. The shape of the rounded region (hereafter called ‘edge’) 
is thus specified by a single curve obtained by intersecting the crystal surface with a 
plane perpendicular to the translation axis. 

The model to be considered applies to the simple cubic structure and includes only 
nearest-neighbour interactions. In the usual way, the energy of a crystal configuration 
corresponds to the energy of an appropriate Ising model with the crystal surface acting 
as an interface between two spin domains. As the geometry of the interface can in 
general be quite complex, it will be necessary to introduce some constraints. 

For definiteness, let us take the symmetry axis of the edge along the z axis and let 
the facet planes be given by x = constant and y = constant. Now consider a small piece 
of the edge having an average local slope of n lattice units in the x direction and m 
lattice units in the y direction. If the cross-sectional lattice path in the ( x , y )  plane 
between the points (0,O) and ( n ,  m )  were allowed to be as general as a self-avoiding 
walk, then certainly it would be difficult to make any further progress. We therefore 
impose the constraint that the cross-sectional path have no backtracks, i.e. the path 
consists of the minimum number of steps: n steps in the +x direction and m steps in 
the +y direction. 

The constraint discussed above can also be realised as a singular limit of anisotropic 
couplings in the corresponding Ising model. Consider the effect of fixing the strength 
of the z couplings at the value 1 while taking the infinite strength limit of the x and 
y couplings. This restricts the allowed configurations of the interface to those that cut 
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through the minimum number of x and y bonds. The cross sections of such surfaces 
are in fact the non-backtracking lattice paths described above. 

In terms of variables which give the heights of columns of atoms, the partition 
function is given explicitly by 

where the sum is over all the n x N sets of integer variables {y,,} that satisfy the 
constraint: 

O s  y,, s y,, s .  . . s y n ,  s m z = I ,  . . . ,  N. ( l b )  

The Boltzmann factor of ( 1  a )  is precisely that of the usual SOS model for the special 
case that the height variables y,, are monotonic in the x direction as implied by ( 1  b). 
Due to the constraint ( 1  b ) ,  the couplings in the x and y directions do not play a role 
and the Boltzmann weight of ( 1  a )  is just the sum of positive areas between consecutive 
cross-sectional paths. Note that by relaxing ( I b )  the symmetry between the x and y 
directions is lost. In the present model it follows that ZN(n, m ;  p )  = Z N ( m ,  n ;  p ) .  

The applicability of our model is restricted to low temperatures since the /3 + 03 

limit does impose the same constraint as letting the x and y couplings become infinite. 
At higher temperatures the neglect of backtracking cross-sectional paths will have 
serious consequences when the slope is very small ( m  << n) or very large ( m  >> n). In 
both extremes we are trying to describe a piece of surface that is very nearly a facet 
yet the sum in ( 1 )  never includes the kinds of configurations that contribute to surface 
roughening. For example, a single adatom on a flat piece of facet would introduce a 
backtrack to the cross-sectional path. Consequently we expect the applicability of the 
model to be confined to temperatures well below the roughening transition. 

A further limitation of the model is the assumption of only nearest-neighbour 
interactions. As pointed out by Rottman and Wortis (1984b), the inclusion of further 
neighbour interactions can in fact influence even the qualitative behaviour of crystal 
surface shapes. 

Complementary to our model of crystal edge shapes is the constrained SOS model 
proposed by Blote and Hilhorst (1982). There the three crystal axes are treated 
symmetrically, making the model well suited for giving an approximation to the shape 
of crystal corners. The surface normal vector in the Blote-Hilhorst model can never 
be parallel to one of the crystal facet planes so that no information is provided about 
the shape of edges. 

The free energy appropriate to ( I )  is given by ( L =  n + m ) :  

lim (NL) - '  log Z N ( p L ,  (1 - p ) L ;  p )  = -F(p, p ) .  
N+E 
L-m 

Here p is the density of steps in the Sx direction. As p + O( 1 )  we approach the facet 
having x = constant ( y  =constant). 

The equilibrium shape of the crystal edge is obtained by the Wulff construction 
(see e.g. Landau and Lifshitz 1969). In order to proceed we have to be able to count 
the number of atoms in the crystal phase. We do this separately for each layer of 
constant z and begin by choosing a completely filled quadrant of atoms as a reference 
configuration. As pointed out above, such an edge can be represented as a semi-infinite 
sequence of f y  steps followed by a semi-infinite sequence of +x steps. For convenience, 
we consider each x step as a particle and each y step as the absence of a particle on 
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a linear lattice. The reference configuration has all the sites to the right of the origin 
occupied and the remaining ones empty. Other configurations can be generated by 
moving a finite number of the already existing particles. The statement of particle 
conservation can be expressed as 

where 5 is the coordinate along the linear lattice and n5 is the occupation number (0 
or 1 )  of site 5 (see figure 1). 

# Y  

i * X  

Figure 1. Two lattice paths and their particle rep- Figure 2. The particle density in the low-temperature 
resentations. limit. 

To understand the general situation it is enough to follow the consequences of 
moving a single particle by one lattice unit. One discovers that a motion in the positive 
(negative) 5 direction corresponds to the creation (annihilation) of a crystal atom at 
the interface. The number of atoms removed from the filled quadrant can thus be 
written as 

When X is large and the configuration is more appropriately described by a density 
of particles p ( [ ) ,  we use the continuum forms of ( 3 )  and (4): 

We can now apply the Wulff construction and obtain the functional 
m 

W P l =  [A (5 - 5 o ) P ( 5 )  - H P ,  PI1 d5  
-m 

where the Lagrange multipliers A t o  and A apply to constraints (3') and (4') respectively. 
The equilibrium shape can now be found by maximising W[p] subject to the conditions 

OSp(5)4  1 

lim p ( 5 )  = 0 
&-+-cc 6-m 

lim p ( 5 )  = 1 .  
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The functional W [ p ]  is extremised for the choice 

dF(p, P ) l a p  = A ( 5 - 50) 1 

which can be inverted (locally) to yield p as a function of 5. However, we will see in 
subsequent calculations that for /3 > 0 

The parameters to and A are related to the position and scale ofthe edge respectively; 
their values are determined by equations (3') and (4'). The coordinate 6 has the 
geometrical interpretation of being measured along an axis rotated 45" with respect to 
the original x and y axes of the crystal (see figure 1). If in some range from 5 to 
6 + A t  the lattice path makes n steps in the +x direction and m steps in the + y  direction, 
the change in position A q ,  perpendicular to the 5 axis is just m - n. Consequently, 

A q / A ( =  ( m  - n ) / ( n + m )  = 1 -2p.  

Finally, upon substituting the rescaled variables t = A t  and s = Aq, the edge profile is 
given by the expression 

s ( t ) =  [ l  -2p(u)]du+constant. (7 )  Id 
In the following sections the free energy (2) will be calculated in the limits P + 00, 

P + O ,  and p + 0. These results can then be used to obtain the low- and high-temperature 
limits of the edge profile as well as the behaviour in the region where the surface joins 
a facet. 

2. Low-temperature expansion 

The partition function ( 1 )  can in principle be expressed in terms of a transfer matrix 
M as 

Z,( n, m ; p )  = Tr M N. 

The elements of M are only simple, however, in the limit /3 + 00 when they can be 
expanded in powers of e-p. If we let L = n + m then the tstates' appropriate to M, as 
discussed in 9 1, are the configurations of n particles on a linear lattice of L sites. The 
matrix element between two such states is unity when the states are the same and e-B 
if the states differ by the displacement of one particle by one unit. If we neglect the 
other matrix elements which are O(e-2p), then M is naturally written in the form 

L- I 

M =  l + e - B  a i+a~a i+ , )+O(e -2P) .  
i = l  
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The operators a t  and a are the usual bosonic creation and annihilation operators with 
the additional properties 

( a : ) ’ =  (a i ) ’  = 0. 

This is necessary since we require that M acting on a state never produce a state with 
two particles occupying the same site. 

When M is written as the exponential of a Hamiltonian the free energy (2) can be 
expressed in terms of the lowest n-particle energy eigenvalue E ( L ,  n): 

M =exp[-HI +O(e-’B)] 
L-I 

HI=  -e-@ ( a : + l a i + a t a i + l )  

F(p, p )  = lim L-IE(L, p L ) .  
L+W 

By use of the Jordan-Wigner transformation (see e.g. Lieb et a1 1961) the operators 
introduced above can be written in terms of fermionic operators with the result that 
the operators in HI are now interpreted as fermionic. Since we have effectively hard-wall 
boundary conditions, the Hamiltonian is diagonalised by the canonical transformation 

with ground state eigenvector and energy given by 
n 

y o =  n b:IO) 
k = l  

n 

E(L,n)=-e-@ E(k)+O(e-’@) 

F ( p ,  p )  = -(2/7r) sin(7rp) e-@ +O(e-’@). 

k = l  

We see that the form of the free energy as a function of p agrees with the claims made 
in § 1. Using equations ( 5 )  and (6) we have 

to = 2e-@ 

p ( t ) = ( l / ? r )  cos-l(--t/to) ( - t o < t < t o )  (9) 
with the edge profile given by (7): 

s ( r )  = t - ( 2 / ~ ) [ t  cos-’(-t/to) + ( t i -  t 2 ) 1 / 2 ]  
r < -to 

- t o <  t <  to il. to< t. 

It is apparent from (9) that the density p(  t )  has square-root singularities at t = * t o  
(see figure 2). Since s ( t )  is essentially the integral of p ( t )  this implies that the edge 
profile joins the facet with a t3” behaviour. The square-root singularities of p can be 
traced to the fact that the present form of the free energy near the x = constant facet 
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behaves as 

F(P, P )  - 4 P ) P  + W ) P 3  + . . . ( P  + 0). (10) 

Up to an additive constant due to the (passive) energy of the bonds in the y direction, 
A ( P )  is simply what is usually called the step free energy. The next term represents 
the cubic dependence of the Fermi energy on the particle density and is directly 
responsible for the exponent i. The relationship with one-dimensional fermions has 
been exploited before in the study of crystal surface shapes (Gruber and Mullins 1967) 
and has appeared in a number of other contexts not directly related to crystals (Kogut 
er a1 1981, de Gennes 1968). 

Later we will show that behaviour (10) holds for all temperatures in the model 
considered. As already mentioned, the predictions of our model become unrealistic 
near the roughening transition. A treatment of the crossover to roughening can be 
found in Jayaprakash et a1 (1983). 

To illustrate the nature of the expansion we will also calculate the O(e-2P) term 
of the free energy. It is first necessary to extend the transfer matrix (8) to include 
operators that generate two units of particle displacement. Most of these operators 
appear in the product fH: where HI is the O(e-’) piece of the Hamiltonian. Being 
the product of two ‘hopping’ operators ( u~~ lu i ) (u~~ lu , ) ,  these terms are correct except 
possibly when their subscripts overlap. To correct for these possible mistakes, we 
subtract out all the overlapping products and add in the correct terms. The latter are 

a l a , - l a : + l a , + H C  ( 1  1 )  

a:+,a,a:a,-, + HC (12) 

where ( 1  1 )  moves two particles each by one unit while (12) moves a single particle 
through two units. Following the above strategy, the transfer matrix can be written as 

M = 1 - HI +fH: 

L -  I 
+ e-’’ C [ala,-l a:+ I ai + a:+ I a i a ~ a i -  I + HC] + O(e-”). 

i = 2  

The Jordan- Wigner transformation replaces the pairs ai by corresponding fer- 
mionic operators so that once again we may interpret all the operators as fermionic. 
Taking the logarithm of M we obtain the Hamiltonian 

H = H ,  + H,+o(~-’@) 

In one of the simplifications the number operator was replaced by n, the number of 
particles. It is now a straightforward problem to evaluate the correction to the ground 
state energy by taking the expectation value of H2 in the zeroth-order ground state. 
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This part of the calculation is relatively unenlightening so we merely give the final result 

~ ( p ,  p )  = -(2/7r) sin(.rrp)e-P 

As a simple check we note that the correction is symmetric about p = 4. It can also be 
verified that this term satisfies equation ( I O ) .  

3. High-temperature limit 

We will concentrate again on the & and 7 coordinate system introduced earlier. The 
set of lattice paths or cross sections of the interface may be thought of as random 
walks ~ ~ ( e ) , ,  . . , ~ ~ ( 5 )  with 6 as a common 'time' parameter. For each step in time 
the particle positions q , ( 6 )  change by *1 with the Boltzmann weight acting as an 
attractive force between consecutive particles. In the limit p + 0 the particles can drift 
very far apart so that over short periods of time the fluctuations in the positive area 
between two consecutive paths are unimportant. In other words, for periods of time 
that are in some sense small compared to the separation between consecutive particles, 
the random walks are free. 

We have to be careful however, to remember the global constraint that during a 
time A t  the random walk makes on the average exactly pA6 steps in the +x direction. 
This is evident from the boundary conditions ( l a )  of the partition function. However, 
for our present purposes it will be more convenient to let the boundaries be free while 
introducing activities p and 1 - p respectively for motion in the +x and + y  directions. 
To recover the original partition function (1 )  we must then divide by 

b " ( 1  --P)"IN 

P l o g p + ( I  - p )  log(1 - P I  

which merely adds the constant 

(14) 

to the free energy. 
NOW suppose that the particle positions are 7,, . . . , 7 N  at some initial time to and 

71,. . . , at some later time &,+A&. For A,$>> 1 but fixed as p + O  we will be able 
to sum over the configurations at intermediate times and thereby obtain a transfer 
matrix. In this limit it will almost always be true that 

17,-77:1<< 17~-71*11=/77:-7:*11 

so that the Boltzmann factor is relatively constant and can be taken outside the 
summation. In terms of the 5 and 7 coordinates we see from figure 1 that this factor 
is given by 

N-l  

i =  I 

What remains is just the sum over N independent random walks having specified 
endpoints and the activity factors discussed above ( A v i  = 7; - 7,): 
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Since A t  >> 1, it can be shown that each term in the product is strongly peaked at 
A v i  = (1 - 2p)At. If we change from the 77 coordinates to the new set zi = vi - ( 1  - 2p)5,  
then (16) takes the asymptotic form 

From the Gaussian factor in (17) it is clear that the zi are effectively continuum 
variables. Changing to the zi variables in (15) and taking the product with (17) we 
end up with the transfer matrix 

This result is indistinguishable from the short-time kernel 

K(z, z ' ;  t )  = lim(z'lexp(-tHN)lz> 
1-0 

with continuum Hamiltonian 
N N- l  

H N  = 2 p ( l  - p )  c p f + t P  c Izi-zi+ll 
i =  I i =  I 

where t = A t .  
The validity of this derivation depended on having the mean separation between 

consecutive particles be large. This is a statement about the ground state wavefunction 
that we can now test. Suppose the mean separation is of order 1, then p f  is of order 
I-'. Since the kinetic and potential parts of the Hamiltonian have the same order of 
magnitude in the ground state we have that 

P(1 - p ) / 1 * - P l  

or 

-p)/p1i/3>> 1. 

Since this breaks down for p + 0 and p + 1, the present approximation cannot give the 
behaviour of the surface near the crystal facets. 

Recalling that the free energy (2) was defined per unit of 5, we see that this is just 
E N / N  where EN is the ground state energy of H N .  The P and p dependence of E N  
can be made explicit by the rescaling 

z = 2[p( 1 - p)/P]'/'x 
2 1/3 - HN=[p( l -p)P  3 HN 

1 = I  i= I 

If the ground state energy of HN is EN and 

e o =  lim N- ' .E~ ,  
N-@2 

then, remembering to include (14), our final result is 
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The exact value of e, is not known but it is easy to obtain the variational bound 

e,< 1.0188 

using the trial wavefunction 
N-1 *,= @(Xi -xi+'). 
i =  I 

4. Low-density expansion 

We will consider once again the transfer matrix M introduced in § 2. However, rather 
than derive an approximate Hamiltonian as was done for the low-temperature 
expansion, we will try to compute the largest eigenvalue of M directly. In terms of 
the original y,, variables, the eigenvalue equation takes the form 

A n m * ( ~ i , . * . , . ~ n ) =  exp(-PZY='=l l ~ i - ~ ~ l ) * ( y ~ , .  ..,YL) (18) 
y'E 3 

where by y ' ~  3 we mean that the sum is over the region 

3: 0s y {  S. . . s yk s m. 

The free energy is now given by 

lim L-' log ApL( I -p )L=  - F ( p ,  P ) .  (19) 
L-CO 

We can view (18) as a kernel for n particles moving on a linear lattice of mi-1 
sites. At low particle density the separations lyi -y j l  are of the order P- '  so that there 
is little interaction among the particles when P- '  << m/n or p << P. In this limit (18) 
approaches the diffusion kernel for n particles that are prevented from moving through 
each other. 

The eigenvalue equation (18) defines the eigenfunction 9 ( y )  also when the point 
y = ( y ' ,  . . . , y,,) lies outside the region 3. It is therefore valid to write equations for 
* ( y )  that sample points outside this region. One such equation involves the second- 
order difference operator 

Vf(x) = (cosh P ) f (x)  - 2 f ( x  + 1 ) + f ( x  - 1 11 
with the property 

V exp(-Plx-x'l)=(sinh /3)SXxt. 

If we apply this operator n times on (18) we obtain the equation 

where 
A n m V l .  . . V ~ * ( . Y )  = (sinh P ) " @ ( Y ) * ( Y )  

Y E 3  
otherwise. 

A different sort of equation using the first-order difference operator 

follows from the identity 
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Since the above inequality is satisfied by each pair of consecutive variables y i  5 Y:+I 

in the summation region 9, we can derive from ( 1  8) the boundary conditions ( i  = 
1, .  . . , n - 1): 

( a ,+1  -e -@)(a t+l+  1 -e@)*(y)[yr=y,+, =o. (21) 

Equation (20) together with the set of boundary conditions (21) are reminiscent 
of some one-dimensional many-body problems that can be solved exactly using the 
Bethe-ansatz method (see e.g. Lieb and Mattis 1966). In particular, if we take the limit 
p + 0 while still maintaining p << p, the product of the operators V in (21) exponentiates 
to give 

e x p ( - F 2  i =  f: I a 2 / a d ) W )  = (~ /A, ,>(~/P)"~(Y) ' (Y)  

since the momentum components of " ( y )  are of the order p < <  p. In the same limit 
the boundary conditions (21) become 

giving us the full set of equations that define the problem of the 'delta-function gas' 
(Lieb and Liniger 1963). 

The exact equations (20) and (21) can in fact also be solved using the Bethe ansatz. 
Unfortunately, however, this solution does not satisfy the original eigenvalue equation 
(18) except in the limit of vanishing density. In order to understand this rather 
remarkable failure it is perhaps instructive to consider in detail the two-body problem 
first. 

When the two particles are free to move on an infinite line of lattice sites we have 
to solve the equation 

The centre of mass motion can be eliminated using 

W Y l ,  Y 2 )  = exP(ikYI)R(Y2-.Yl) 

where now, in terms of the relative coordinate r = y 2 - y ,  2 0, the eigenvalue equation 
becomes 

X 

A R ( r ) =  K ( r - r ' ) R ( r ' )  ( 2 2 )  
r ' = O  

oc 
K (  U )  = K ( - U ) *  = exp( -j3lul - P I U  + U [  - iku). 

U = - W  

Equation (22) is of the kind that can be solved using the Wiener-Hopf method. 
Since this method is explained at length elsewhere (see for example Mathews and 
Walker 1970) we will only give the final answer. Although the form of our wavefunction 
is exact, the constants that appear have been approximated for the case that A is in 
the vicinity of the maximum eigenvalue. These wavefunctions are best characterised 
in terms of two small momentum values pl and p 2  

*(.Y!, ~ 2 )  = exp(ipIyl+ ip2~2) - exp(i4) exp(ip2y1 +iply2) 
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where 

4 = C(PI -p2)+O(p2)  (24) 

A = i[(e-b - 1 - e-b)-'( 1 - e-P)-2]( p1 - p 2 )  + O( p')  

and 

b=-log{l - 4 ~ [ ( l  + ; u - ' ) ' ' ~ -  I]}+O(p) 

c = 1 + ( 1  + u-1)1'2- (4u)-'[( 1 + ; V - 1 ) " 2 - -  11-1 

U = sinh' (/3/2). 

We see that the first two terms of the wavefunction (23) have exactly the Bethe-ansatz 
form with the phase shift given by 4. However, there is also an  exponentially decaying 
term that describes a 'bound-state' piece of the wavefunction. It is this term that spoils 
the Bethe ansatz. One would also expect analogues of this term to arise in the general 
n-body problem. We can nevertheless make some progress by taking advantage of the 
fact that relative to the plane-wave terms, the bound-state amplitude is small 

A - O ( p )  - O b ) .  

The first term in a low-density expansion would thus proceed along the Bethe-ansatz 
lines while pretending A = 0. The question is then the following: to what order in 
momentum may we keep terms in the phase shift 4 ?  We conjecture that it is valid to 
retain the terms up  to O ( p )  but cannot provide a simple proof of this claim. Some 
evidence in favour will appear at the end of this section. 

The boundary conditions implicit in (18) due to the endpoints of the lattice are 
not ideally suited to the present discussion. We therefore modify the original problem 
by wrapping the lattice into a circle of m points. This should not affect the thermo- 
dynamic limit and  allows us to impose the periodic boundary conditions 

( 2 5 )  

One of the terms appearing in the wavefunction 9 is the product of n plane waves 

W Y I , .  . . 1  Y " )  = w 2 , .  . * 9 Y", + , V I ) .  

exp(iplyl + . . . + ip,y,). (26) 

By suitably normalising V the coefficient of this term can be set equal to unity. Other 
terms in 9 obtained from (26) by permuting the momenta will have coefficients given 
by appropriate phases. For the permutation that shifts the momenta in an  n-cycle the 
phase can be deduced trivially since by (25) the term (26) becomes 

exp(ip,m) exp(ip,yl + i p l ~ z + .  . .+ ipn - l~n) .  (27) 

In the usual Bethe-ansatz problem one generates the same permutation by the sequence of 
transpositions 

T 2 . .  . Tn-I Tn 

T, : (28) 

where the phase shifts 4 are obtained directly from an  equation of the type (21). In 
the present situation, however, we use the result (24) of the two-body problem. Equating 
the phase in (27) with the accumulated phase from (28) we end u p  with the set of 

exp(ip,- ly,- 1 + ipnyt 1 + - exp[i4 ( p , -  I ,  P,, )I exp(ip,y,-, + ip,- ly,)  
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equations ( N ,  = integer, 11 = odd) 

Plm = c 4(P,, P,)+2.rrNl 
If! 

= - cnp, + c p, + 2.rrN,. (29) 
I 

A non-trivial ground state wavefunction is found by choosing a distinct set of 
momenta that satisfy (29) and maximise the eigenvalue A,,,,,. Recalling the action of 
the difference operator 

V exp(ipy) = (cosh p -cos p )  exp(ipy), 

the eigenvalue, according to (20), is just 

From (29) we see that (to this approximation) the momenta are equally spaced. The 
maximum eigenvalue results when these are chosen symmetrically about p = 0 

Using (19) we arrive at our final result 

[p3+2(1 - C ) ~ ~ ] + O ( ~ ~ ) .  
sinh p 1 

F ( p ’  log( cosh p - I )  +:(cosh p - I )  

The first term above is simply related to the free energy of a single particle on an 
infinite lattice, while the O ( p 3 )  term reflects the impenetrability of the two adjacent 
particles. These terms are insensitive to the precise nature of the interaction among 
the particles except that these are short range and hard core. The O ( p )  dependence 
of the phase shift first appears in the O(p4) term of (30) and required the solution of 
the two-body problem. Presumably the O ( p 5 )  term will involve the inclusion of 
three-body effects. 

A useful check on our result (in particular the O(p4) term) follows from the 
observation that (30) and the low-temperature result (13) have a common region of 
validity. Indeed, it can be verified that an expansion of the coefficients of (30) in 
powers of e-’ agrees with the expansion of (13) in powers of p. 

Finally, we observe that the O(p2)  term vanishes for all values of the temperature, 
thus confirming ( I O )  and our claims about the behaviour of the surface near a facet. 
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