The equilibrium shape of crystal edges

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1985 J. Phys. A: Math. Gen. 18857
(http://iopscience.iop.org/0305-4470/18/5/018)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 09:30

Please note that terms and conditions apply.

The equilibrium shape of crystal edges

Veit Elser \dagger
Lawrence Berkeley Laboratory and Department of Physics, University of California, Berkeley, CA 94720, USA

Received 30 March 1984, in final form 21 September 1984

Abstract

A constrained sos model is used to describe the shape of the rounded region between two semi-infinite facets of a simple cubic crystal. Low- and high-temperature results are derived as well as the detailed behaviour near the crystal facet. Applicability of the model is limited to low temperatures where roughening effects are unimportant.

1. Introduction

At temperatures below the faceting or roughening transition the equilibrium crystal surface consists of a set of planar facets and smooth rounded regions interpolating between different facets (Rottman and Wortis 1984a). This paper will discuss the shape of the rounded region for the simplest possible situation: the meeting of two semi-infinite facets. In this case the geometrical intersection of the facet planes establishes an axis of translational symmetry. The shape of the rounded region (hereafter called 'edge') is thus specified by a single curve obtained by intersecting the crystal surface with a plane perpendicular to the translation axis.

The model to be considered applies to the simple cubic structure and includes only nearest-neighbour interactions. In the usual way, the energy of a crystal configuration corresponds to the energy of an appropriate Ising model with the crystal surface acting as an interface between two spin domains. As the geometry of the interface can in general be quite complex, it will be necessary to introduce some constraints.

For definiteness, let us take the symmetry axis of the edge along the z axis and let the facet planes be given by $x=$ constant and $y=$ constant. Now consider a small piece of the edge having an average local slope of n lattice units in the x direction and m lattice units in the y direction. If the cross-sectional lattice path in the (x, y) plane between the points (0,0) and (n, m) were allowed to be as general as a self-avoiding walk, then certainly it would be difficult to make any further progress. We therefore impose the constraint that the cross-sectional path have no backtracks, i.e. the path consists of the minimum number of steps: n steps in the $+x$ direction and m steps in the $+y$ direction.

The constraint discussed above can also be realised as a singular limit of anisotropic couplings in the corresponding Ising model. Consider the effect of fixing the strength of the z couplings at the value 1 while taking the infinite strength limit of the x and y couplings. This restricts the allowed configurations of the interface to those that cut

[^0]through the minimum number of x and y bonds. The cross sections of such surfaces are in fact the non-backtracking lattice paths described above.

In terms of variables which give the heights of columns of atoms, the partition function is given explicitly by

$$
\begin{equation*}
Z_{N}(n, m ; \beta)=\sum_{\left\{y_{x z}\right\}} \exp \left(-\beta \Sigma_{x, 2}\left|y_{x z}-y_{x z+1}\right|\right) \tag{1a}
\end{equation*}
$$

where the sum is over all the $n \times N$ sets of integer variables $\left\{y_{x z}\right\}$ that satisfy the constraint:

$$
\begin{equation*}
0 \leqslant y_{1 z} \leqslant y_{2 z} \leqslant \ldots \leqslant y_{n z} \leqslant m \quad z=1, \ldots, N . \tag{1b}
\end{equation*}
$$

The Boltzmann factor of ($1 a$) is precisely that of the usual sos model for the special case that the height variables $y_{x z}$ are monotonic in the x direction as implied by ($1 b$). Due to the constraint ($1 b$), the couplings in the x and y directions do not play a role and the Boltzmann weight of $(1 a)$ is just the sum of positive areas between consecutive cross-sectional paths. Note that by relaxing ($1 b$) the symmetry between the x and y directions is lost. In the present model it follows that $Z_{N}(n, m ; \beta)=Z_{N}(m, n ; \beta)$.

The applicability of our model is restricted to low temperatures since the $\beta \rightarrow \infty$ limit does impose the same constraint as letting the x and y couplings become infinite. At higher temperatures the neglect of backtracking cross-sectional paths will have serious consequences when the slope is very small ($m \ll n$) or very large ($m \gg n$). In both extremes we are trying to describe a piece of surface that is very nearly a facet yet the sum in (1) never includes the kinds of configurations that contribute to surface roughening. For example, a single adatom on a flat piece of facet would introduce a backtrack to the cross-sectional path. Consequently we expect the applicability of the model to be confined to temperatures well below the roughening transition.

A further limitation of the model is the assumption of only nearest-neighbour interactions. As pointed out by Rottman and Wortis (1984b), the inclusion of further neighbour interactions can in fact influence even the qualitative behaviour of crystal surface shapes.

Complementary to our model of crystal edge shapes is the constrained sos model proposed by Blöte and Hilhorst (1982). There the three crystal axes are treated symmetrically, making the model well suited for giving an approximation to the shape of crystal corners. The surface normal vector in the Blöte-Hilhorst model can never be parallel to one of the crystal facet planes so that no information is provided about the shape of edges.

The free energy appropriate to (1) is given by ($L=n+m$):

$$
\begin{equation*}
\lim _{\substack{N \rightarrow \infty \\ L \rightarrow \infty}}(N L)^{-1} \log Z_{N}(\rho L,(1-\rho) L ; \beta)=-F(\rho, \beta) \tag{2}
\end{equation*}
$$

Here ρ is the density of steps in the $+x$ direction. As $\rho \rightarrow 0(1)$ we approach the facet having $x=$ constant ($y=$ constant).

The equilibrium shape of the crystal edge is obtained by the Wulff construction (see e.g. Landau and Lifshitz 1969). In order to proceed we have to be able to count the number of atoms in the crystal phase. We do this separately for each layer of constant z and begin by choosing a completely filled quadrant of atoms as a reference configuration. As pointed out above, such an edge can be represented as a semi-infinite sequence of $+y$ steps followed by a semi-infinite sequence of $+x$ steps. For convenience, we consider each x step as a particle and each y step as the absence of a particle on
a linear lattice. The reference configuration has all the sites to the right of the origin occupied and the remaining ones empty. Other configurations can be generated by moving a finite number of the already existing particles. The statement of particle conservation can be expressed as

$$
\begin{equation*}
0=\sum_{\xi>0}\left(n_{\xi}-1\right)+\sum_{\xi \leqslant 0} n_{\xi} \tag{3}
\end{equation*}
$$

where ξ is the coordinate along the linear lattice and n_{ξ} is the occupation number (0 or 1) of site ξ (see figure 1).

Figure 1. Two lattice paths and their particle representations.

Figure 2. The particle density in the low-temperature limit.

To understand the general situation it is enough to follow the consequences of moving a single particle by one lattice unit. One discovers that a motion in the positive (negative) ξ direction corresponds to the creation (annihilation) of a crystal atom at the interface. The number of atoms removed from the filled quadrant can thus be written as

$$
\begin{equation*}
\mathcal{N}=-\sum_{\xi>0} \xi\left(n_{\xi}-1\right)-\sum_{\xi \leqslant 0} \xi n_{\xi} . \tag{4}
\end{equation*}
$$

When \mathcal{N} is large and the configuration is more appropriately described by a density of particles $\rho(\xi)$, we use the continuum forms of (3) and (4):

$$
\begin{align*}
& 0=\int_{0}^{\infty}[\rho(\xi)-1] \mathrm{d} \xi+\int_{-\infty}^{0} \rho(\xi) \mathrm{d} \xi \\
& \mathcal{N}=-\int_{0}^{\infty} \xi[\rho(\xi)-1] \mathrm{d} \xi-\int_{-\infty}^{0} \xi \rho(\xi) \mathrm{d} \xi
\end{align*}
$$

We can now apply the Wulff construction and obtain the functional

$$
W[\rho]=\int_{-\infty}^{\infty}\left[\lambda\left(\xi-\xi_{0}\right) \rho(\xi)-F(\rho, \beta)\right] \mathrm{d} \xi
$$

where the Lagrange multipliers $\lambda \xi_{0}$ and λ apply to constraints (3^{\prime}) and (4') respectively. The equilibrium shape can now be found by maximising $W[\rho]$ subject to the conditions

$$
\begin{aligned}
& 0 \leqslant \rho(\xi) \leqslant 1 \\
& \lim _{\xi \rightarrow-\infty} \rho(\xi)=0 \quad \lim _{\xi \rightarrow \infty} \rho(\xi)=1
\end{aligned}
$$

The functional $W[\rho]$ is extremised for the choice

$$
\partial F(\rho, \beta) / \partial \rho=\lambda\left(\xi-\xi_{0}\right) \equiv t
$$

which can be inverted (locally) to yield ρ as a function of ξ. However, we will see in subsequent calculations that for $\beta>0$

$$
\begin{array}{ll}
\partial F(0, \beta) / \partial \rho=-t_{0} & \partial F(1, \beta) / \partial \rho=t_{0} \tag{5}\\
-t_{0}<\partial F(\rho, \beta) / \partial \rho<t_{0} & (0<\rho<1)
\end{array}
$$

where $t_{0}>0$ is finite. This means that in general,

$$
\rho(t)=\left\{\begin{array}{lc}
0 & t<-t_{0} \tag{6}\\
\left(\partial_{\rho} F\right)^{-1}(t) & -t_{0}<t<t_{0} \\
1 & t_{0}<t .
\end{array}\right.
$$

The parameters ξ_{0} and λ are related to the position and scale of the edge respectively; their values are determined by equations (3^{\prime}) and (4^{\prime}). The coordinate ξ has the geometrical interpretation of being measured along an axis rotated 45° with respect to the original x and y axes of the crystal (see figure 1). If in some range from ξ to $\xi+\Delta \xi$ the lattice path makes n steps in the $+x$ direction and m steps in the $+y$ direction, the change in position $\Delta \eta$, perpendicular to the ξ axis is just $m-n$. Consequently,

$$
\Delta \eta / \Delta \xi=(m-n) /(n+m)=1-2 \rho .
$$

Finally, upon substituting the rescaled variables $t=\lambda \xi$ and $s=\lambda \eta$, the edge profile is given by the expression

$$
\begin{equation*}
s(t)=\int_{0}^{1}[1-2 \rho(u)] \mathrm{d} u+\text { constant } . \tag{7}
\end{equation*}
$$

In the following sections the free energy (2) will be calculated in the limits $\beta \rightarrow \infty$, $\beta \rightarrow 0$, and $\rho \rightarrow 0$. These results can then be used to obtain the low- and high-temperature limits of the edge profile as well as the behaviour in the region where the surface joins a facet.

2. Low-temperature expansion

The partition function (1) can in principle be expressed in terms of a transfer matrix M as

$$
Z_{N}(n, m ; \beta)=\operatorname{Tr} M^{N}
$$

The elements of M are only simple, however, in the limit $\beta \rightarrow \infty$ when they can be expanded in powers of $\mathrm{e}^{-\beta}$. If we let $L=n+m$ then the 'states' appropriate to M, as discussed in $\S 1$, are the configurations of n particles on a linear lattice of L sites. The matrix element between two such states is unity when the states are the same and $\mathrm{e}^{-\beta}$ if the states differ by the displacement of one particle by one unit. If we neglect the other matrix elements which are $O\left(e^{-2 \beta}\right)$, then M is naturally written in the form

$$
\begin{equation*}
M=1+\mathrm{e}^{-\beta} \sum_{i=1}^{L-1}\left(a_{i+1}^{+} a_{i}+a_{i}^{\dagger} a_{i+1}\right)+\mathrm{O}\left(\mathrm{e}^{-2 \beta}\right) \tag{8}
\end{equation*}
$$

The operators a^{+}and a are the usual bosonic creation and annihilation operators with the additional properties

$$
\left(a_{i}^{+}\right)^{2}=\left(a_{i}\right)^{2}=0 .
$$

This is necessary since we require that M acting on a state never produce a state with two particles occupying the same site.

When M is written as the exponential of a Hamiltonian the free energy (2) can be expressed in terms of the lowest n-particle energy eigenvalue $E(L, n)$:

$$
\begin{aligned}
& M=\exp \left[-H_{1}+\mathrm{O}\left(\mathrm{e}^{-2 \beta}\right)\right] \\
& H_{1}=-\mathrm{e}^{-\beta} \sum_{i=1}^{L-1}\left(a_{i+1}^{\dagger} a_{i}+a_{i}^{\dagger} a_{i+1}\right) \\
& F(\rho, \beta)=\lim _{L \rightarrow \infty} L^{-1} E(L, \rho L)
\end{aligned}
$$

By use of the Jordan-Wigner transformation (see e.g. Lieb et al 1961) the operators introduced above can be written in terms of fermionic operators with the result that the operators in H_{1} are now interpreted as fermionic. Since we have effectively hard-wall boundary conditions, the Hamiltonian is diagonalised by the canonical transformation

$$
\begin{aligned}
& a_{i}^{(+)}=\left(\frac{2}{L+1}\right)^{1 / 2} \sum_{k=1}^{L} \sin \left(\frac{\pi i k}{L+1}\right) b_{k}^{(+)} \\
& H_{1}=-\mathrm{e}^{-\beta} \sum_{k=1}^{L} \varepsilon(k) b_{k}^{\dagger} b_{k} \quad \varepsilon(k)=2 \cos \left(\frac{\pi k}{L+1}\right)
\end{aligned}
$$

with ground state eigenvector and energy given by

$$
\begin{aligned}
& \Psi_{0}=\prod_{k=1}^{n} b_{k}^{\dagger}|0\rangle \\
& E(L, n)=-\mathrm{e}^{-\beta} \sum_{k=1}^{n} \varepsilon(k)+\mathrm{O}\left(\mathrm{e}^{-2 \beta}\right) \\
& F(\rho, \beta)=-(2 / \pi) \sin (\pi \rho) \mathrm{e}^{-\beta}+\mathrm{O}\left(\mathrm{e}^{-2 \beta}\right)
\end{aligned}
$$

We see that the form of the free energy as a function of ρ agrees with the claims made in § 1 . Using equations (5) and (6) we have

$$
\begin{align*}
& t_{0}=2 \mathrm{e}^{-\beta} \\
& \rho(t)=(1 / \pi) \cos ^{-1}\left(-t / t_{0}\right) \quad\left(-t_{0}<t<t_{0}\right) \tag{9}
\end{align*}
$$

with the edge profile given by (7):

$$
s(t)=\left\{\begin{array}{lc}
t & t<-t_{0} \\
t-(2 / \pi)\left[t \cos ^{-1}\left(-t / t_{0}\right)+\left(t_{0}^{2}-t^{2}\right)^{1 / 2}\right] & -t_{0}<t<t_{0} \\
-t & t_{0}<t
\end{array}\right.
$$

It is apparent from (9) that the density $\rho(t)$ has square-root singularities at $t= \pm t_{0}$ (see figure 2). Since $s(t)$ is essentially the integral of $\rho(t)$ this implies that the edge profile joins the facet with a $t^{3 / 2}$ behaviour. The square-root singularities of ρ can be traced to the fact that the present form of the free energy near the $x=$ constant facet
behaves as

$$
\begin{equation*}
F(\rho, \beta) \sim A(\beta) \rho+B(\beta) \rho^{3}+\ldots \quad(\rho \rightarrow 0) \tag{10}
\end{equation*}
$$

Up to an additive constant due to the (passive) energy of the bonds in the y direction, $A(\beta)$ is simply what is usually called the step free energy. The next term represents the cubic dependence of the Fermi energy on the particle density and is directly responsible for the exponent $\frac{3}{2}$. The relationship with one-dimensional fermions has been exploited before in the study of crystal surface shapes (Gruber and Mullins 1967) and has appeared in a number of other contexts not directly related to crystals (Kogut et al 1981, de Gennes 1968).

Later we will show that behaviour (10) holds for all temperatures in the model considered. As already mentioned, the predictions of our model become unrealistic near the roughening transition. A treatment of the crossover to roughening can be found in Jayaprakash et al (1983).

To illustrate the nature of the expansion we will also calculate the $O\left(\mathrm{e}^{-2 \beta}\right)$ term of the free energy. It is first necessary to extend the transfer matrix (8) to include operators that generate two units of particle displacement. Most of these operators appear in the product $\frac{1}{2} H_{1}^{2}$ where H_{1} is the $\mathrm{O}\left(\mathrm{e}^{-\beta}\right)$ piece of the Hamiltonian. Being the product of two 'hopping' operators $\left(a_{i \pm 1}^{+} a_{i}\right)\left(a_{j \pm 1}^{\dagger} a_{j}\right)$, these terms are correct except possibly when their subscripts overlap. To correct for these possible mistakes, we subtract out all the overlapping products and add in the correct terms. The latter are

$$
\begin{align*}
& a_{i}^{\dagger} a_{i-1} a_{i+1}^{+} a_{i}+\mathrm{HC} \tag{11}\\
& a_{i+1}^{\dagger} a_{i} a_{i}^{+} a_{i-1}+\mathrm{HC} \tag{12}
\end{align*}
$$

where (11) moves two particles each by one unit while (12) moves a single particle through two units. Following the above strategy, the transfer matrix can be written as

$$
\begin{aligned}
M=1-H_{1}+ & \frac{1}{2}
\end{aligned} H_{1}^{2} .
$$

The Jordan-Wigner transformation replaces the pairs $a_{i \pm 1}^{\dagger} a_{i}$ by corresponding fermionic operators so that once again we may interpret all the operators as fermionic. Taking the logarithm of M we obtain the Hamiltonian

$$
\begin{aligned}
& H=H_{1}+H_{2}+\mathrm{O}\left(\mathrm{e}^{-3 \beta}\right) \\
& H_{2}=\mathrm{e}^{-2 \beta}\left(\sum_{i=2}^{L-1}\left[a_{i+1}^{\dagger}\left(a_{i}^{\dagger} a_{i}-\frac{1}{2}\right) a_{i-1}+\mathrm{HC}\right]+\sum_{i=1}^{L-1} a_{i+1}^{\dagger} a_{i}^{\dagger} a_{i+1} a_{i}+n\right) .
\end{aligned}
$$

In one of the simplifications the number operator was replaced by n, the number of particles. It is now a straightforward problem to evaluate the correction to the ground state energy by taking the expectation value of H_{2} in the zeroth-order ground state.

This part of the calculation is relatively unenlightening so we merely give the final result

$$
\begin{align*}
& F(\rho, \beta)=-(2 / \pi) \sin (\pi \rho) \mathrm{e}^{-\beta} \\
&+\left\{\rho(1-\rho)+[(2 \rho-1) / 2 \pi] \sin (2 \pi \rho)-\left(1 / \pi^{2}\right) \sin ^{2}(\pi \rho)\right\} \mathrm{e}^{-2 \beta}+\mathrm{O}\left(\mathrm{e}^{-3 \beta}\right) \tag{13}
\end{align*}
$$

As a simple check we note that the correction is symmetric about $\rho=\frac{1}{2}$. It can also be verified that this term satisfies equation (10).

3. High-temperature limit

We will concentrate again on the ξ and η coordinate system introduced earlier. The set of lattice paths or cross sections of the interface may be thought of as random walks $\eta_{1}(\xi), \ldots, \eta_{N}(\xi)$ with ξ as a common 'time' parameter. For each step in time the particle positions $\eta_{i}(\xi)$ change by ± 1 with the Boltzmann weight acting as an attractive force between consecutive particles. In the limit $\beta \rightarrow 0$ the particles can drift very far apart so that over short periods of time the fluctuations in the positive area between two consecutive paths are unimportant. In other words, for periods of time that are in some sense small compared to the separation between consecutive particles, the random walks are free.

We have to be careful however, to remember the global constraint that during a time $\Delta \xi$ the random walk makes on the average exactly $\rho \Delta \xi$ steps in the $+x$ direction. This is evident from the boundary conditions ($1 a$) of the partition function. However, for our present purposes it will be more convenient to let the boundaries be free while introducing activities ρ and $I-\rho$ respectively for motion in the $+x$ and $+y$ directions. To recover the original partition function (1) we must then divide by

$$
\left[\rho^{n}(1-\rho)^{m}\right]^{N}
$$

which merely adds the constant

$$
\begin{equation*}
\rho \log \rho+(1-\rho) \log (1-\rho) \tag{14}
\end{equation*}
$$

to the free energy.
Now suppose that the particle positions are $\eta_{1}, \ldots, \eta_{N}$ at some initial time ξ_{0} and $\eta_{1}^{\prime}, \ldots, \eta_{N}^{\prime}$ at some later time $\xi_{0}+\Delta \xi$. For $\Delta \xi \gg 1$ but fixed as $\beta \rightarrow 0$ we will be able to sum over the configurations at intermediate times and thereby obtain a transfer matrix. In this limit it will almost always be true that

$$
\left|\eta_{i}-\eta_{i}^{\prime}\right| \ll\left|\eta_{i}-\eta_{i \pm 1}\right| \simeq\left|\eta_{i}^{\prime}-\eta_{i \pm 1}^{\prime}\right|
$$

so that the Boltzmann factor is relatively constant and can be taken outside the summation. In terms of the ξ and η coordinates we see from figure 1 that this factor is given by

$$
\begin{equation*}
\exp \left(-\frac{1}{2} \beta \Delta \xi \sum_{i=1}^{N-1}\left|\eta_{i}-\eta_{i+1}\right|\right) \tag{15}
\end{equation*}
$$

What remains is just the sum over N independent random walks having specified endpoints and the activity factors discussed above ($\Delta \eta_{i}=\eta_{i}^{\prime}-\eta_{i}$):

$$
\begin{equation*}
\prod_{i=1}^{N}\binom{\Delta \xi}{\frac{1}{2}\left(\Delta \xi-\Delta \eta_{i}\right)} \rho^{\left(\Delta \xi-\Delta \eta_{i}\right) / 2}(1-\rho)^{\left(\Delta \xi+\Delta \eta_{i}\right) / 2} \tag{16}
\end{equation*}
$$

Since $\Delta \xi \gg 1$, it can be shown that each term in the product is strongly peaked at $\Delta \eta_{i}=(1-2 \rho) \Delta \xi$. If we change from the η coordinates to the new set $z_{i}=\eta_{i}-(1-2 \rho) \xi$, then (16) takes the asymptotic form

$$
\begin{equation*}
\prod_{i=1}^{N} \frac{1}{[8 \pi \rho(1-\rho) \Delta \xi]^{1 / 2}} \exp \left(-\frac{\left(z_{i}^{\prime}-z_{i}\right)^{2}}{8 \rho(1-\rho) \Delta \xi}\right) \tag{17}
\end{equation*}
$$

From the Gaussian factor in (17) it is clear that the z_{i} are effectively continuum variables. Changing to the z_{i} variables in (15) and taking the product with (17) we end up with the transfer matrix
$K\left(z, z^{\prime} ; \Delta \xi\right)=\left(\frac{1}{8 \pi \rho(1-\rho) \Delta \xi}\right)^{N / 2} \exp \left(-\sum_{i=1}^{N} \frac{\left(z_{i}^{\prime}-z_{i}\right)^{2}}{8 \rho(1-\rho) \Delta \xi}-\frac{1}{2} \beta \Delta \xi \sum_{i=1}^{N-1}\left|z_{i}-z_{i+1}\right|\right)$.
This result is indistinguishable from the short-time kernel

$$
K\left(z, z^{\prime} ; t\right)=\lim _{t \rightarrow 0}\left\langle z^{\prime}\right| \exp \left(-t H_{N}\right)|z\rangle
$$

with continuum Hamiltonian

$$
H_{N}=2 \rho(1-\rho) \sum_{i=1}^{N} p_{i}^{2}+\frac{1}{2} \beta \sum_{i=1}^{N-1}\left|z_{i}-z_{i+1}\right|
$$

where $t=\Delta \xi$.
The validity of this derivation depended on having the mean separation between consecutive particles be large. This is a statement about the ground state wavefunction that we can now test. Suppose the mean separation is of order l, then p_{i}^{2} is of order l^{-2}. Since the kinetic and potential parts of the Hamiltonian have the same order of magnitude in the ground state we have that

$$
\rho(1-\rho) / l^{2} \sim \beta l
$$

or

$$
l \sim[\rho(1-\rho) / \beta]^{1 / 3} \gg 1
$$

Since this breaks down for $\rho \rightarrow 0$ and $\rho \rightarrow 1$, the present approximation cannot give the behaviour of the surface near the crystal facets.

Recalling that the free energy (2) was defined per unit of ξ, we see that this is just E_{N} / N where E_{N} is the ground state energy of H_{N}. The β and ρ dependence of E_{N} can be made explicit by the rescaling

$$
\begin{aligned}
& z=2[\rho(1-\rho) / \beta]^{1 / 3} x \\
& H_{N}=\left[\rho(1-\rho) \beta^{2}\right]^{1 / 3} \bar{H}_{N} \\
& \bar{H}_{N}=\frac{1}{2} \sum_{i=1}^{N} p_{i}^{2}+\sum_{i=1}^{N-1}\left|x_{i}-x_{i+1}\right|
\end{aligned}
$$

If the ground state energy of \bar{H}_{N} is \bar{E}_{N} and

$$
e_{0}=\lim _{N \rightarrow \infty} N^{-1} \bar{E}_{N}
$$

then, remembering to include (14), our final result is
$F(\rho, \beta)=\rho \log \rho+(1-\rho) \log (1-\rho)+e_{0}\left[\rho(1-\rho) \beta^{2}\right]^{1 / 3} \quad \beta \ll \rho(1-\rho)$.

The exact value of e_{0} is not known but it is easy to obtain the variational bound

$$
e_{0}<1.0188
$$

using the trial wavefunction

$$
\Psi_{0}=\prod_{i=1}^{N-1} \Phi\left(x_{i}-x_{i+1}\right) .
$$

4. Low-density expansion

We will consider once again the transfer matrix M introduced in § 2 . However, rather than derive an approximate Hamiltonian as was done for the low-temperature expansion, we will try to compute the largest eigenvalue of M directly. In terms of the original $y_{x z}$ variables, the eigenvalue equation takes the form

$$
\begin{equation*}
\Lambda_{n m} \Psi\left(y_{1}, \ldots, y_{n}\right)=\sum_{y^{\prime} \in \mathscr{\Re}} \exp \left(-\beta \sum_{i=1}^{n}\left|y_{i}-y_{i}^{\prime}\right|\right) \Psi\left(y_{i}^{\prime}, \ldots, y_{n}^{\prime}\right) \tag{18}
\end{equation*}
$$

where by $y^{\prime} \in \mathscr{R}$ we mean that the sum is over the region

$$
\mathscr{R}: 0 \leqslant y_{1}^{\prime} \leqslant \ldots \leqslant y_{n}^{\prime} \leqslant m .
$$

The free energy is now given by

$$
\begin{equation*}
\lim _{L \rightarrow \infty} L^{-1} \log \Lambda_{\rho L(1-\rho) L}=-F(\rho, \beta) \tag{19}
\end{equation*}
$$

We can view (18) as a kernel for n particles moving on a linear lattice of $m+1$ sites. At low particle density the separations $\left|y_{i}-y_{i}^{\prime}\right|$ are of the order β^{-1} so that there is little interaction among the particles when $\beta^{-1} \ll m / n$ or $\rho \ll \beta$. In this limit (18) approaches the diffusion kernel for n particles that are prevented from moving through each other.

The eigenvalue equation (18) defines the eigenfunction $\Psi(y)$ also when the point $y=\left(y^{1}, \ldots, y_{n}\right)$ lies outside the region \mathscr{R}. It is therefore valid to write equations for $\Psi(y)$ that sample points outside this region. One such equation involves the secondorder difference operator

$$
\nabla f(x) \equiv(\cosh \beta) f(x)-\frac{1}{2}[f(x+1)+f(x-1)]
$$

with the property

$$
\nabla \exp \left(-\beta\left|x-x^{\prime}\right|\right)=(\sinh \beta) \delta_{x x^{\prime}}
$$

If we apply this operator n times on (18) we obtain the equation

$$
\begin{equation*}
\Lambda_{n m} \nabla_{1} \ldots \nabla_{n} \Psi(y)=(\sinh \beta)^{n} \theta(y) \Psi(y) \tag{20}
\end{equation*}
$$

where

$$
\theta(y)= \begin{cases}1 & y \in \mathscr{R} \\ 0 & \text { otherwise } .\end{cases}
$$

A different sort of equation using the first-order difference operator

$$
\partial f(x) \equiv f(x+1)-f(x)
$$

follows from the identity

$$
\left.\left(\partial_{1}+1-\mathrm{e}^{-\beta}\right)\left(\partial_{2}+1-\mathrm{e}^{\beta}\right) \exp \left(-\beta\left|x_{1}-x_{1}^{\prime}\right|-\beta\left|x_{2}-x_{2}^{\prime}\right|\right)\right|_{x_{1}=x_{2}}=0 \quad \text { for } x_{1}^{\prime} \leqslant x_{2}^{\prime} .
$$

Since the above inequality is satisfied by each pair of consecutive variables $y_{i}^{\prime} \leqslant y_{i+1}^{\prime}$ in the summation region \mathscr{R}, we can derive from (18) the boundary conditions ($i=$ $1, \ldots, n-1$):

$$
\begin{equation*}
\left.\left(\partial_{i}+1-\mathrm{e}^{-\beta}\right)\left(\partial_{i+1}+1-\mathrm{e}^{\beta}\right) \Psi(y)\right|_{y_{i}=y_{i+1}}=0 \tag{21}
\end{equation*}
$$

Equation (20) together with the set of boundary conditions (21) are reminiscent of some one-dimensional many-body problems that can be solved exactly using the Bethe-ansatz method (see e.g. Lieb and Mattis 1966). In particular, if we take the limit $\beta \rightarrow 0$ while still maintaining $\rho \ll \beta$, the product of the operators ∇ in (21) exponentiates to give

$$
\exp \left(-\beta^{-2} \sum_{i=1}^{n} \partial^{2} / \partial y_{i}^{2}\right) \Psi(y)=\left(1 / \Lambda_{n m}\right)(2 / \beta)^{n} \theta(y) \Psi(y)
$$

since the momentum components of $\Psi(y)$ are of the order $\rho \ll \beta$. In the same limit the boundary conditions (21) become

$$
\left.\left(\frac{\partial}{\partial y_{i+1}}-\frac{\partial}{\partial y_{i}}-\beta\right) \Psi(y)\right|_{y_{t}=y_{i+1}}=0 \quad i=1, \ldots, n-1
$$

giving us the full set of equations that define the problem of the 'delta-function gas' (Lieb and Liniger 1963).

The exact equations (20) and (21) can in fact also be solved using the Bethe ansatz. Unfortunately, however, this solution does not satisfy the original eigenvalue equation (18) except in the limit of vanishing density. In order to understand this rather remarkable failure it is perhaps instructive to consider in detail the two-body problem first.

When the two particles are free to move on an infinite line of lattice sites we have to solve the equation

$$
\Lambda \Psi\left(y_{1}, y_{2}\right)=\sum_{y_{1} \leqslant y_{2}^{\prime}} \exp \left(-\beta\left|y_{1}-y_{1}^{\prime}\right|-\beta\left|y_{2}-y_{2}^{\prime}\right|\right) \Psi\left(y_{1}^{\prime}, y_{2}^{\prime}\right) .
$$

The centre of mass motion can be eliminated using

$$
\Psi\left(y_{1}, y_{2}\right)=\exp \left(\mathrm{i} k y_{1}\right) R\left(y_{2}-y_{1}\right)
$$

where now, in terms of the relative coordinate $r=y_{2}-y_{1} \geqslant 0$, the eigenvalue equation becomes

$$
\begin{align*}
& \Lambda R(r)=\sum_{r^{\prime}=0}^{\infty} K\left(r-r^{\prime}\right) R\left(r^{\prime}\right) \tag{22}\\
& K(u)=K(-u)^{*}=\sum_{v=-\infty}^{\infty} \exp (-\beta|v|-\beta|u+v|-\mathrm{i} k v)
\end{align*}
$$

Equation (22) is of the kind that can be solved using the Wiener-Hopf method. Since this method is explained at length elsewhere (see for example Mathews and Walker 1970) we will only give the final answer. Although the form of our wavefunction is exact, the constants that appear have been approximated for the case that Λ is in the vicinity of the maximum eigenvalue. These wavefunctions are best characterised in terms of two small momentum values p_{1} and p_{2}

$$
\begin{gather*}
\Psi\left(y_{1}, y_{2}\right)=\exp \left(\mathrm{i} p_{1} y_{1}+\mathrm{i} p_{2} y_{2}\right)-\exp (\mathrm{i} \phi) \exp \left(\mathrm{i} p_{2} y_{1}+\mathrm{i} p_{1} y_{2}\right) \\
+A \exp \left[\mathrm{i} \frac{1}{2}\left(p_{1}+p_{2}\right)\left(y_{1}+y_{2}\right)-b\left(y_{2}-y_{1}\right)\right] \tag{23}
\end{gather*}
$$

where

$$
\begin{align*}
& \phi=c\left(p_{1}-p_{2}\right)+\mathrm{O}\left(p^{2}\right) \tag{24}\\
& A=\mathrm{i}\left[\left(\mathrm{e}^{-b}-\mathrm{e}^{-\beta}\right)^{2}\left(1-\mathrm{e}^{-b}\right)^{-1}\left(1-\mathrm{e}^{-\beta}\right)^{-2}\right]\left(p_{1}-p_{2}\right)+\mathrm{O}\left(p^{2}\right)
\end{align*}
$$

and

$$
\begin{aligned}
& b=-\log \left\{1-4 v\left[\left(1+\frac{1}{2} v^{-1}\right)^{1 / 2}-1\right]\right\}+\mathrm{O}(p) \\
& c=1+\left(1+v^{-1}\right)^{1 / 2}-(4 v)^{-1}\left[\left(1+\frac{1}{2} v^{-1}\right)^{1 / 2}-1\right]^{-1} \\
& v \equiv \sinh ^{2}(\beta / 2) .
\end{aligned}
$$

We see that the first two terms of the wavefunction (23) have exactly the Bethe-ansatz form with the phase shift given by ϕ. However, there is also an exponentially decaying term that describes a 'bound-state' piece of the wavefunction. It is this term that spoils the Bethe ansatz. One would also expect analogues of this term to arise in the general n-body problem. We can nevertheless make some progress by taking advantage of the fact that relative to the plane-wave terms, the bound-state amplitude is small

$$
A \sim \mathrm{O}(p) \sim \mathrm{O}(\rho)
$$

The first term in a low-density expansion would thus proceed along the Bethe-ansatz lines while pretending $A=0$. The question is then the following: to what order in momentum may we keep terms in the phase shift ϕ ? We conjecture that it is valid to retain the terms up to $O(p)$ but cannot provide a simple proof of this claim. Some evidence in favour will appear at the end of this section.

The boundary conditions implicit in (18) due to the endpoints of the lattice are not ideally suited to the present discussion. We therefore modify the original problem by wrapping the lattice into a circle of m points. This should not affect the thermodynamic limit and allows us to impose the periodic boundary conditions

$$
\begin{equation*}
\Psi\left(y_{1}, \ldots, y_{n}\right)=\Psi\left(y_{2}, \ldots, y_{n}, m+y_{1}\right) . \tag{25}
\end{equation*}
$$

One of the terms appearing in the wavefunction Ψ is the product of n plane waves

$$
\begin{equation*}
\exp \left(\mathrm{i} p_{1} y_{1}+\ldots+\mathrm{i} p_{n} y_{n}\right) \tag{26}
\end{equation*}
$$

By suitably normalising Ψ the coefficient of this term can be set equal to unity. Other terms in Ψ obtained from (26) by permuting the momenta will have coefficients given by appropriate phases. For the permutation that shifts the momenta in an n-cycle the phase can be deduced trivially since by (25) the term (26) becomes

$$
\begin{equation*}
\exp \left(\mathrm{i} p_{n} m\right) \exp \left(\mathrm{i} p_{n} y_{1}+\mathrm{i} p_{1} y_{2}+\ldots+\mathrm{i} p_{n-1} y_{n}\right) \tag{27}
\end{equation*}
$$

In the usual Bethe-ansatz problem one generates the same permutation by the sequence of transpositions

$$
\begin{gather*}
T_{2} \ldots T_{n-1} T_{n} \\
T_{i}: \quad \exp \left(\mathrm{i} p_{i-1} y_{i-1}+\mathrm{i} p_{n} y_{i}\right) \rightarrow-\exp \left[\mathrm{i} \phi\left(p_{i-1}, p_{n}\right)\right] \exp \left(\mathrm{i} p_{n} y_{i-1}+\mathrm{i} p_{i-1} y_{i}\right) \tag{28}
\end{gather*}
$$

where the phase shifts ϕ are obtained directly from an equation of the type (21). In the present situation, however, we use the result (24) of the two-body problem. Equating the phase in (27) with the accumulated phase from (28) we end up with the set of
equations ($N_{i}=$ integer, $n=$ odd $)$

$$
\begin{align*}
p_{i} m & =\sum_{j \neq i} \phi\left(p_{j}, p_{i}\right)+2 \pi N_{i} \\
& =-c n p_{i}+c \sum_{j} p_{j}+2 \pi N_{i} . \tag{29}
\end{align*}
$$

A non-trivial ground state wavefunction is found by choosing a distinct set of momenta that satisfy (29) and maximise the eigenvalue $\Lambda_{n m}$. Recalling the action of the difference operator

$$
\nabla \exp (\mathrm{i} p y)=(\cosh \beta-\cos p) \exp (\mathrm{i} p y)
$$

the eigenvalue, according to (20), is just

$$
\Lambda_{n m}=\prod_{i=1}^{n}\left(\frac{\sinh \beta}{\cosh \beta-\cos p_{i}}\right) .
$$

From (29) we see that (to this approximation) the momenta are equally spaced. The maximum eigenvalue results when these are chosen symmetrically about $p=0$

$$
\begin{aligned}
& p_{i}=\left(2 \pi N_{i} / m\right)\left[1-(c n / m)+\mathrm{O}\left(\rho^{2}\right)\right] \\
& -\frac{1}{2}(n-1) \leqslant N_{i} \leqslant \frac{1}{2}(n-1) .
\end{aligned}
$$

Using (19) we arrive at our final result
$F(\rho, \beta)=-\rho \log \left(\frac{\sinh \beta}{\cosh \beta-1}\right)+\frac{\pi^{2}}{6}\left(\frac{1}{\cosh \beta-1}\right)\left[\rho^{3}+2(1-c) \rho^{4}\right]+\mathrm{O}\left(\rho^{5}\right)$.
The first term above is simply related to the free energy of a single particle on an infinite lattice, while the $O\left(\rho^{3}\right)$ term reflects the impenetrability of the two adjacent particles. These terms are insensitive to the precise nature of the interaction among the particles except that these are short range and hard core. The $O(p)$ dependence of the phase shift first appears in the $\mathrm{O}\left(\rho^{4}\right)$ term of (30) and required the solution of the two-body problem. Presumably the $O\left(\rho^{5}\right)$ term will involve the inclusion of three-body effects.

A useful check on our result (in particular the $\mathrm{O}\left(\rho^{4}\right)$ term) follows from the observation that (30) and the low-temperature result (13) have a common region of validity. Indeed, it can be verified that an expansion of the coefficients of (30) in powers of $\mathrm{e}^{-\beta}$ agrees with the expansion of (13) in powers of ρ.

Finally, we observe that the $\mathrm{O}\left(\rho^{2}\right)$ term vanishes for all values of the temperature, thus confirming (10) and our claims about the behaviour of the surface near a facet.

Acknowledgments

The author thanks D S Fisher for pointing out the reference by Jayaprakash et al (1983) and O Alvarez and J Carlson for technical suggestions. This work was supported by the Director, Office of Energy Research, Office of High Energy and Nuclear Physics, Division of High Energy Physics of the US Department of Energy under Contract DE-AC03-76SF00098.

References

Blöte H and Hithorst H 1982 J. Phys. A: Math. Gen. 15 L631
de Gennes P 1968 J. Chem. Phys. 482257
Gruber E and Mullins W 1967 J. Phys. Chem. Solids 28875
Jayaprakash C, Saam W F and Teitel S 1983 Phys Rev. Lett. 502017
Kogut J B, Sinclair D K, Pearson R B, Richardson J L and Shigenutsu J 1981 Phys. Rev. D 232945
Landau L D and Lifshitz E M 1969 Statistical Physics (Reading, Mass: Addison-Wesley) § 143
Lieb E H and Liniger W 1963 Phys. Rev. 1301605
Lieb E H and Mattis D C 1966 Mathematical Physics in One Dimension (New York: Academic) ch 6
Lieb E H, Schultz T D and Mattis D C 1967 Ann. Phys., NY 16407
Mathews J and Walker R L 1970 Mathematical Methods of Physics (New York: Benjamin) p 312
Rottman C and Wortis M 1984a Phys. Rep. 10359

- 1984b Phys. Rev. B 29328

[^0]: † Present address: AT and T Bell Laboratories, 600 Mountain Avenue, Murray Hill, New Jersey 07974, USA.

